6 research outputs found

    Photonics-assisted analog wideband self-interference cancellation for in-band full-duplex MIMO systems with adaptive digital amplitude and delay pre-matching

    Full text link
    A photonics-assisted analog wideband RF self-interference (SI) cancellation and frequency downconversion approach for in-band full-duplex (IBFD) multiple-input multiple-output (MIMO) systems with adaptive digital amplitude and delay pre-matching is proposed based on a dual-parallel Mach-Zehnder modulator (DP-MZM). In each MIMO receiving antenna, the received signal, including different SI signals from different transmitting antennas and the signal of interest, is applied to one arm of the upper dual-drive Mach-ehnder modulator (DD-MZM) of the DP-MZM, the reference signal is applied to the other arm of the upper DD-MZM, and the local oscillator signal is applied to the lower DD-MZM. The SI signals are canceled in the optical domain in the upper DD-MZM and the frequency downconversion is achieved after photodetection. To cancel the SI signals, the reference signal is constructed in the digital domain, while the amplitude and delay of the constructed reference are adjusted digitally by upsampling with high accuracy. Experiments are performed when two different SI signals are employed. The genetic algorithm and least-squares algorithm are combined with segmented searching respectively for the SI signal reconstruction and amplitude and delay pre-matching. A cancellation depth of around 20 dB is achieved for the 1-Gbaud 16 quadrature-amplitude modulation orthogonal frequency-division multiplexing signal.Comment: 25 pages, 17 figure

    Using artificial magnetic conductors to improve the efficiency of wireless power transfer

    No full text
    In this study, an advanced wireless power transfer (WPT) system of two coils with the artificial magnetic conductors (AMC) is explored through simulations and experiments. The AMC structure is added on the transmitter coil, and the multiple resonant modes on the surface of the AMC can be energized. On the other hand, the AMC structure act as a magnetic field shield, which leads to the magnetic field above AMC structure is localized. Therefore, the localized resonant magnetic field enhance the transmission coefficient of the WPT system. The results show that the WPT transmission coefficient is increased from 16% to 35% in the experiment at 26.2 MHz resonant frequency when transmission distance is 3 cm. The experimental results agree with the simulation results. Additionally, AMC has the advantages of low-cost and can easily be installed on the WPT system

    Preparation and Application of High-Efficiency, Antibacterial, and Antiviral PET–PTHP Fibers

    No full text
    Transmission through the respiratory tract is one of the most important ways for bacteria and viruses to infect the human body; the use of high-performance antibacterial and antiviral protective equipment is the most effective way to prevent the spread of respiratory diseases. However, at present, most personal protective equipment lacks the ability to kill pathogens. In this paper, a kind of polytetrahydropyrimidine–polyethylene terephthalate functional fiber (PET–PTHP fibers) with highly sustained antibacterial and antiviral properties was prepared. The inactivation rate of the fibers against Staphylococcus aureus and Escherichia coli was as high as 99.99%, and the antibacterial time was more than 72 h. The fibers have an obvious destructive effect on lentiviruses and can reduce the infection rate of lentiviruses in BxPC-3 cells from 25.4 to 9.7%. The cytotoxicity test, cell live/dead staining test, and cell proliferation test all confirmed that PET–PTHP fibers have no obvious cytotoxicity and good cytocompatibility. By applying the functional fibers to the inner layer of the masks, a new type of mask with adsorption, filtration, and killing properties against pathogens was prepared. The filtration efficiency of the new masks was 99.3%, and the pressure drop was 104 Pa. The new masks have excellent air permeability and filtration effect, meet the practical application conditions, and are of grade A; therefore, these masks provide medical protection as well as kill pathogens at the same time, further reducing the risk of human infection
    corecore